

It's the Problem Of the Day IPOD # 17

Name or Write a Formula for the following examples...

 \circ Zn(OH)₂

Magnesium Bromate

Strontium Sulfite

 \circ Fe₂O₃

o Tin (II) Sulfide

 \circ Ga(NO₃)₃

Aluminum Carbonate

• Silver (I) Iodide

• CoP

o MnO

It's the Problem Of the Day

IPOD # 18

Show how an ionic bond forms by completing the following:

Metal	Valence shell	e dot symbol	Ion formed	Valence shell of ion	Chemical name and formula of compound
aluminum					
Nonmetal	Valence shell	e ⁻ dot symbol	Ion formed	Valence shell of ion	
bromine					

Bonding model

It's the Problem Of the Day IPOD # 19

Name or Write a Formula for the following examples...

- \circ K₃PO₄
- Sodium nitride
- Boron trichloride
- HI
- \circ N₂O₅
- Calcium sulfate
- Acetic acid

- \circ HBrO₂
- Lead (II) hydroxide
- Sulfuric acid
- KBr
- \circ CCl₄
- \circ Cu₂SO₄
- Dinitrogen tetrahydride

It's the Problem Of the Day IPOD # 20 Draw a Lewis Dot Structure for the Following...

 \circ CH₂Cl₂

o Dihydrogen monosulfide

• Nitrogen trichloride

• Lead (II) hydroxide

• Boron triiodide

• Carbon dioxide

It's the Problem Of the Day IPOD # 21

Complete the Following Table...

<u>Name</u>	<u>Formula</u>	<u>Lewis Dot</u> <u>Structure</u>	Molecular Shape VSEPR Shape	Bond Polarity Use EN differences to calculate	Molecule Type polar or nonpolar based on molecule symmetry	Intermolecular Attractions London dispersion, dipole, hydrogen bonding?
silicon tetrachloride						
Dihydrogen monoselenide						
	NH_3					